Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.846
Filtrar
1.
EMBO Rep ; 25(4): 1936-1961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438802

RESUMO

Induction of DNA damage triggers rapid phosphorylation of the histone H2A.X (γH2A.X). In animals, mediator of DNA damage checkpoint 1 (MDC1) binds γH2A.X through a tandem BRCA1 carboxyl-terminal (tBRCT) domain and mediates recruitment of downstream effectors of DNA damage response (DDR). However, readers of this modification in plants have remained elusive. We show that from the Arabidopsis BRCT domain proteome, BCP1-4 proteins with tBRCT domains are involved in DDR. Through its tBRCT domain BCP4 binds γH2A.X in vitro and localizes to DNA damage-induced foci in an H2A.X-dependent manner. BCP4 also contains a domain that interacts directly with NBS1 and thus acts as a functional counterpart of MDC1. We also show that BCP1, that contains two tBRCT domains, co-localizes with γH2A.X but it does not bind γH2A.X suggesting functional similarity with human PAXIP1. A phylogenetic analysis supports that PAXIP1 and MDC1 in metazoa and their plant counterparts evolved independently from common ancestors with tBRCT domains. Collectively, our study reveals missing components and provides mechanistic and evolutionary insights into plant DDR.


Assuntos
Dano ao DNA , Proteínas Nucleares , Animais , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação/genética , Reparo do DNA
2.
Nucleic Acids Res ; 52(6): 3146-3163, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38349040

RESUMO

Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA , Proteínas de Xenopus , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA/genética , DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Ativação Enzimática/genética , Fosforilação/genética
3.
J Biol Chem ; 300(3): 105695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301894

RESUMO

BHLHE40 is a basic helix-loop-helix transcription factor that is involved in multiple cell activities including differentiation, cell cycle, and epithelial-to-mesenchymal transition. While there is growing evidence to support the functions of BHLHE40 in energy metabolism, little is known about the mechanism. In this study, we found that BHLHE40 expression was downregulated in cases of endometrial cancer of higher grade and advanced disease. Knockdown of BHLHE40 in endometrial cancer cells resulted in suppressed oxygen consumption and enhanced extracellular acidification. Suppressed pyruvate dehydrogenase (PDH) activity and enhanced lactated dehydrogenase (LDH) activity were observed in the knockdown cells. Knockdown of BHLHE40 also led to dephosphorylation of AMPKα Thr172 and enhanced phosphorylation of pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) Ser293 and lactate dehydrogenase A (LDHA) Tyr10. These results suggested that BHLHE40 modulates PDH and LDH activity by regulating the phosphorylation status of PDHA1 and LDHA. We found that BHLHE40 enhanced AMPKα phosphorylation by directly suppressing the transcription of an AMPKα-specific phosphatase, PPM1F. Our immunohistochemical study showed that the expression of BHLHE40, PPM1F, and phosphorylated AMPKα correlated with the prognosis of endometrial cancer patients. Because AMPK is a central regulator of energy metabolism in cancer cells, targeting the BHLHE40‒PPM1F‒AMPK axis may represent a strategy to control cancer development.


Assuntos
Proteínas Quinases Ativadas por AMP , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias do Endométrio , Metabolismo Energético , Fosfoproteínas Fosfatases , Feminino , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/fisiopatologia , Metabolismo Energético/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Consumo de Oxigênio/genética , Regulação Neoplásica da Expressão Gênica/genética , Fosforilação/genética
4.
J Biol Chem ; 300(2): 105591, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141769

RESUMO

Long noncoding RNAs (lncRNAs) are specifically expressed in different diseases and regulate disease progression. To explore the functions of rheumatoid arthritis (RA)-specific lncRNA, we determined the lncRNA expression profile of fibroblast-like synoviocytes (FLS) obtained from patients with RA and osteoarthritis (OA) using a LncRNA microarray and identified up-regulated LncNFYB in RA as a potential therapeutic target. Using gain- and loss-of-function studies, LncNFYB was proven to promote FLS proliferation and cell cycle progress but not affect their invasion, migration, and apoptotic abilities. Further investigation discovered that LncRNA could combine with annexin A2 (ANXA2) and enhance the level of phospho-ANXA2 (Tyr24) in the plasma membrane area, which induced the activation of ERK1/2 to promote proliferation. These findings provide new insights into the biological functions of LncNFYB on modification of FLS, which may be exploited for the therapy of RA.


Assuntos
Anexina A2 , Artrite Reumatoide , Sistema de Sinalização das MAP Quinases , RNA Longo não Codificante , Sinoviócitos , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/fisiopatologia , Proliferação de Células/genética , Células Cultivadas , Ativação Enzimática/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Fosforilação/genética , Ligação Proteica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sinoviócitos/citologia , Sinoviócitos/metabolismo
5.
PeerJ ; 11: e16679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130932

RESUMO

Background: Breast cancer (BC) is a malignancy that is inadequately treated and poses a significant global health threat to females. The aberrant expression of long noncoding RNAs (lncRNAs) acts as a complex with a precise regulatory role in BC progression. LINC00969 has been linked to pyroptotic cell death and resistance to gefitinib in lung cancer cells. However, the precise function and regulatory mechanisms of LINC00969 in BC remain largely unexplored. Methods: Cell proliferation, migration, and invasion of BC cells were evaluated using CCK-8 and Transwell assays. Western blotting was employed to analyze the protein expression levels of HOXD8, ILP2, PI3K, t-AKT, and p-AKT. Results: LINC00969 was drastically reduced in BC tissues LINC00969 overexpression markedly suppressed proliferation, migration, and invasion, and blocked PI3K and p-AKT protein expression in MCF-7 cells. Activation of the PI3K/AKT pathway reversed the suppressive effect of LINC0096 overexpression on the proliferation, migration, and invasion of MCF-7 cells. Moreover, LINC00969 overexpression enhanced HOXD8 and blocked ILP2 protein expression in MCF-7 cells. In contrast, activating the PI3K/AKT pathway had no effect on HOXD8 and blocked ILP2 protein expression in MCF-7 cells overexpressing LINC00969. HOXD8 knockdown enhanced ILP2, PI3K, and p-AKT protein expression, and the proliferation, migration, and invasion of MCF-7 cells co-transfected with si-HOXD8 and ov-LINC00969. LINC00969 regulated HOXD8 via binding to miR-425-5p. Conclusion: LINC00969 inhibits the proliferation and metastasis of BC cells by regulating PI3K/AKT phosphorylation through HOXD8/ILP2.


Assuntos
Neoplasias da Mama , MicroRNAs , Feminino , Humanos , Neoplasias da Mama/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Fosfatidilinositol 3-Quinases/genética , Linhagem Celular Tumoral , Fosforilação/genética , Proliferação de Células/genética , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética
6.
J Biol Chem ; 299(12): 105370, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865315

RESUMO

G protein-coupled receptors (GPCRs) are highly druggable and implicated in numerous diseases, including vascular inflammation. GPCR signals are transduced from the plasma membrane as well as from endosomes and controlled by posttranslational modifications. The thrombin-activated GPCR protease-activated receptor-1 is modified by ubiquitin. Ubiquitination of protease-activated receptor-1 drives recruitment of transforming growth factor-ß-activated kinase-1-binding protein 2 (TAB2) and coassociation of TAB1 on endosomes, which triggers p38 mitogen-activated protein kinase-dependent inflammatory responses in endothelial cells. Other endothelial GPCRs also induce p38 activation via a noncanonical TAB1-TAB2-dependent pathway. However, the regulatory processes that control GPCR ubiquitin-driven p38 inflammatory signaling remains poorly understood. We discovered mechanisms that turn on GPCR ubiquitin-dependent p38 signaling, however, the mechanisms that turn off the pathway are not known. We hypothesize that deubiquitination is an important step in regulating ubiquitin-driven p38 signaling. To identify specific deubiquitinating enzymes (DUBs) that control GPCR-p38 mitogen-activated protein kinase signaling, we conducted a siRNA library screen targeting 96 DUBs in endothelial cells and HeLa cells. We identified nine DUBs and validated the function two DUBs including cylindromatosis and ubiquitin-specific protease-34 that specifically regulate thrombin-induced p38 phosphorylation. Depletion of cylindromatosis expression by siRNA enhanced thrombin-stimulated p38 signaling, endothelial barrier permeability, and increased interleukin-6 cytokine expression. Conversely, siRNA knockdown of ubiquitin-specific protease-34 expression decreased thrombin-promoted interleukin-6 expression and had no effect on thrombin-induced endothelial barrier permeability. These studies suggest that specific DUBs distinctly regulate GPCR-induced p38-mediated inflammatory responses.


Assuntos
Enzima Desubiquitinante CYLD , Enzimas Desubiquitinantes , Células Endoteliais , Trombina , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Enzimas Desubiquitinantes/metabolismo , Células Endoteliais/metabolismo , Células HeLa , Interleucina-6/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor PAR-1/metabolismo , RNA Interferente Pequeno/metabolismo , Trombina/farmacologia , Trombina/metabolismo , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Linhagem Celular , Regulação Enzimológica da Expressão Gênica , Fosforilação/genética
7.
Cells ; 12(14)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37508495

RESUMO

A serine/threonine-specific protein kinase B (PKB), also known as Akt, is a key factor in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway that regulates cell survival, metabolism and proliferation. Akt phosphorylates many downstream specific substrates, which subsequently control the nuclear envelope breakdown (NEBD), centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. In vertebrates, Akt is also an important player during oogenesis and preimplantation development. In the signaling pathways regulating mRNA translation, Akt is involved in the control of mammalian target of rapamycin complex 1 (mTORC1) and thereby regulates the activity of a translational repressor, the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). In this review, we summarize the functions of Akt in mitosis, meiosis and early embryonic development. Additionally, the role of Akt in the regulation of mRNA translation is addressed with respect to the significance of this process during early development.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação/genética , Fosfoproteínas/metabolismo , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Oogênese , Oócitos/metabolismo , Desenvolvimento Embrionário , Mamíferos/metabolismo
8.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37260014

RESUMO

Mutations in protein phosphatase 2A (PP2A) are connected to intellectual disability and cancer. It has been hypothesized that these mutations might disrupt the autoinhibition and phosphorylation-induced activation of PP2A. Since they are located far from both the active and substrate binding sites, it is unclear how they exert their effect. We performed allosteric pathway analysis based on molecular dynamics simulations and combined it with biochemical experiments to investigate the autoinhibition of PP2A. In the wild type (WT), the C-arm of the regulatory subunit B56δ obstructs the active and substrate binding sites exerting a dual autoinhibition effect. We find that the disease mutant, E198K, severely weakens the allosteric pathways that stabilize the C-arm in the WT. Instead, the strongest allosteric pathways in E198K take a different route that promotes exposure of the substrate binding site. To facilitate the allosteric pathway analysis, we introduce a path clustering algorithm for lumping pathways into channels. We reveal remarkable similarities between the allosteric channels of E198K and those in phosphorylation-activated WT, suggesting that the autoinhibition can be alleviated through a conserved mechanism. In contrast, we find that another disease mutant, E200K, which is in spatial proximity of E198, does not repartition the allosteric pathways leading to the substrate binding site; however, it may still induce exposure of the active site. This finding agrees with our biochemical data, allowing us to predict the activity of PP2A with the phosphorylated B56δ and provide insight into how disease mutations in spatial proximity alter the enzymatic activity in surprisingly different mechanisms.


Assuntos
Proteína Fosfatase 2 , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Fosforilação/genética , Domínios Proteicos , Mutação , Ligação Proteica
9.
Biochem Biophys Res Commun ; 673: 1-8, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37352571

RESUMO

Cyclic GMP-AMP synthase (cGAS), which recognizes double-stranded DNA (dsDNA) and activates the innate immune system, is mainly localized in the cytosol, but also shows nuclear localization. Here, we sought to determine the role of nuclear cGAS by mutating known nuclear localization signal (NLS) motifs in cGAS and assessing its functionality by monitoring phosphorylation of the downstream target, interferon regulatory factor-3 (IRF3). Interestingly, NLS2-mutated cGAS failed to promote phosphorylation of IRF3, reflecting the loss of its ability to produce cyclic GMP-AMP (cGAMP). We further found that insertion of an NLS from SV40 large T antigen could not restore this loss of activity, indicating that this loss was attributable to the mutation of NLS2 itself, but not dependent on the inability of cGAS to enter the nucleus. NLS2-mutant cGAS protein also showed decreased stability dependent on polyubiquitination, an effect that was independent of both its loss of catalytic function and its inability to enter into the nucleus. Collectively, these findings indicate that the NLS2 motif of cGAS is not only involved in regulating the subcellular localization of cGAS protein but also influences its stability and enzymatic activity through independent mechanisms, highlighting the novel roles of NLS2 in regulating the intracellular functions of cGAS.


Assuntos
Núcleo Celular , Nucleotidiltransferases , Núcleo Celular/metabolismo , DNA/metabolismo , Imunidade Inata/genética , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilação/genética , Proteólise
10.
Sci Adv ; 9(20): eadf8698, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37205756

RESUMO

Cyclin-dependent kinase 12 (CDK12) interacts with cyclin K to form a functional nuclear kinase that promotes processive transcription elongation through phosphorylation of the C-terminal domain of RNA polymerase II (Pol II). To gain a comprehensive understanding of CDK12's cellular function, we used chemical genetic and phosphoproteomic screening to identify a landscape of nuclear human CDK12 substrates, including regulators of transcription, chromatin organization, and RNA splicing. We further validated LEO1, a subunit of the polymerase-associated factor 1 complex (PAF1C), as a bona fide cellular substrate of CDK12. Acute depletion of LEO1, or substituting LEO1 phosphorylation sites with alanine, attenuated PAF1C association with elongating Pol II and impaired processive transcription elongation. Moreover, we discovered that LEO1 interacts with and is dephosphorylated by the Integrator-PP2A complex (INTAC) and that INTAC depletion promotes the association of PAF1C with Pol II. Together, this study reveals an uncharacterized role for CDK12 and INTAC in regulating LEO1 phosphorylation, providing important insights into gene transcription and its regulation.


Assuntos
Quinases Ciclina-Dependentes , RNA Polimerase II , Humanos , Fosforilação/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , RNA Polimerase II/metabolismo , Núcleo Celular/metabolismo , Transcrição Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Addict Biol ; 28(5): e13276, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186439

RESUMO

Calcium/calmodulin-dependent kinase II (CaMKII) is a key enzyme at the glutamatergic synapses. CAMK2A gene variants have been linked with alcohol use disorder (AUD) by an unknown mechanism. Here, we looked for the link between αCaMKII autophosphorylation and the AUD aetiology. Autophosphorylation-deficient heterozygous αCaMKII mutant mice (T286A+/- ) were trained in the IntelliCages to test the role of αCaMKII activity in AUD-related behaviours. The glutamatergic synapses morphology in CeA was studied in the animals drinking alcohol using 3D electron microscopy. We found that T286A+/- mutants consumed less alcohol and were more sensitive to sedating effects of alcohol, as compared to wild-type littermates (WT). After voluntary alcohol drinking, T286A+/- mice had less excitatory synapses in the CeA, as compared to alcohol-naive animals. This change correlated with alcohol consumption was not reversed after alcohol withdrawal and not observed in WT mice. Our study suggests that αCaMKII autophosphorylation affects alcohol consumption by controlling sedative effects of alcohol and preventing synaptic loss in the individuals drinking alcohol. This finding advances our understanding of the molecular processes that regulate alcohol dependence.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Animais , Camundongos , Alcoolismo/genética , Alcoolismo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Etanol/farmacologia , Etanol/metabolismo , Fosforilação/genética , Síndrome de Abstinência a Substâncias/metabolismo , Sinapses/metabolismo
12.
Neurobiol Dis ; 182: 106136, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120096

RESUMO

Fragile X Messenger Ribonucleoprotein (FMRP) is necessary for experience-dependent, developmental synapse elimination and the loss of this process may underlie the excess dendritic spines and hyperconnectivity of cortical neurons in Fragile X Syndrome, a common inherited form of intellectual disability and autism. Little is known of the signaling pathways that regulate synapse elimination and if or how FMRP is regulated during this process. We have characterized a model of synapse elimination in CA1 neurons of organotypic hippocampal slice cultures that is induced by expression of the active transcription factor Myocyte Enhancer Factor 2 (MEF2) and relies on postsynaptic FMRP. MEF2-induced synapse elimination is deficient in Fmr1 KO CA1 neurons, and is rescued by acute (24 h), postsynaptic and cell autonomous reexpression of FMRP in CA1 neurons. FMRP is an RNA binding protein that suppresses mRNA translation. Derepression is induced by posttranslational mechanisms downstream of metabotropic glutamate receptor signaling. Dephosphorylation of FMRP at S499 triggers ubiquitination and degradation of FMRP which then relieves translation suppression and promotes synthesis of proteins encoded by target mRNAs. Whether this mechanism functions in synapse elimination is not known. Here we demonstrate that phosphorylation and dephosphorylation of FMRP at S499 are both necessary for synapse elimination as well as interaction of FMRP with its E3 ligase for FMRP, APC/Cdh1. Using a bimolecular ubiquitin-mediated fluorescence complementation (UbFC) assay, we demonstrate that MEF2 promotes ubiquitination of FMRP in CA1 neurons that relies on activity and interaction with APC/Cdh1. Our results suggest a model where MEF2 regulates posttranslational modifications of FMRP via APC/Cdh1 to regulate translation of proteins necessary for synapse elimination.


Assuntos
Proteína do X Frágil de Retardo Mental , Síndrome do Cromossomo X Frágil , Animais , Camundongos , Fatores de Transcrição MEF2/metabolismo , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Fosforilação/genética , Sinapses/metabolismo , Síndrome do Cromossomo X Frágil/genética , Camundongos Knockout
13.
Signal Transduct Target Ther ; 8(1): 66, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797256

RESUMO

Abnormal activation of Wnt/ß-catenin-mediated transcription is closely associated with the malignancy of pancreatic cancer. Family with sequence similarity 83 member A (FAM83A) was shown recently to have oncogenic effects in a variety of cancer types, but the biological roles and molecular mechanisms of FAM83A in pancreatic cancer need further investigation. Here, we newly discovered that FAM83A binds directly to ß-catenin and inhibits the assembly of the cytoplasmic destruction complex thus inhibiting the subsequent phosphorylation and degradation. FAM83A is mainly phosphorylated by the SRC non-receptor kinase family member BLK (B-lymphoid tyrosine kinase) at tyrosine 138 residue within the DUF1669 domain that mediates the FAM83A-ß-catenin interaction. Moreover, FAM83A tyrosine 138 phosphorylation enhances oncogenic Wnt/ß-catenin-mediated transcription through promoting ß-catenin-TCF4 interaction and showed an elevated nucleus translocation, which inhibits the recruitment of histone deacetylases by TCF4. We also showed that FAM83A is a direct downstream target of Wnt/ß-catenin signaling and correlates with the levels of Wnt target genes in human clinical pancreatic cancer tissues. Notably, the inhibitory peptides that target the FAM83A-ß-catenin interaction significantly suppressed pancreatic cancer growth and metastasis in vitro and in vivo. Our results revealed that blocking the FAM83A cascade signaling defines a therapeutic target in human pancreatic cancer.


Assuntos
Proteínas de Neoplasias , Neoplasias Pancreáticas , beta Catenina , Quinases da Família src , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/genética , Fosforilação/genética , Tirosina/metabolismo , Via de Sinalização Wnt/genética , Quinases da Família src/genética , Quinases da Família src/metabolismo , Neoplasias Pancreáticas
14.
Eur J Histochem ; 67(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36632786

RESUMO

Spastin, a microtubule-severing enzyme, is known to be important for neurite outgrowth. However, the role of spastin post-translational modification, particularly its phosphorylation regulation in neuronal outgrowth, remains unclear. This study aimed to investigate the effects of eliminating spastin phosphorylation on the neurite outgrowth of rat hippocampal neurons. To accomplish this, we constructed a spastin mutant with eleven potential phosphorylation sites mutated to alanine. The phosphorylation levels of the wildtype spastin (WT) and the mutant (11A) were then detected using Phos-tag SDS-PAGE. The spastin constructs were transfected into COS7 cells for the observation of microtubule severing, and into rat hippocampal neurons for the detection of neuronal outgrowth. The results showed that compared to the spastin WT, the phosphorylation levels were significantly reduced in the spastin 11A mutant. The spastin mutant 11A impaired its ability to promote neurite length, branching, and complexity in hippocampal neurons, but did not affect its ability to sever microtubules in COS7 cells. In conclusion, the data suggest that mutations at multiple phosphorylation sites of spastin do not impair its microtubule cleavage ability in COS7 cells, but reduce its ability to promote neurite outgrowth in rat hippocampal neurons.


Assuntos
Microtúbulos , Crescimento Neuronal , Espastina , Animais , Ratos , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Crescimento Neuronal/genética , Fosforilação/genética , Espastina/genética , Espastina/metabolismo , Células COS , Chlorocebus aethiops , Humanos
15.
Fungal Genet Biol ; 164: 103764, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481249

RESUMO

The target of rapamycin (TOR), a major pathway for the regulation of cell growth and proliferation is conserved from yeast to humans. Fission yeast contains two tor complexes, TORC1 is crucial for cell growth while TORC2 gets activated under stress conditions. Pop3/Wat1, a mammalian Lst8 ortholog is an important component of both TOR complexes and has been implicated in the oxidative stress response pathway. Here in this study, the genetic interaction analysis revealed a synthetic lethal interaction of wat1 with tor2-287 mutant cells. Co-immunoprecipitation analysis revealed Wat1 interacts with TORC1 components Tor2, Mip1, and Tco89 while wat1-17 mutant protein fails to interact with these proteins. In the absence of Wat1, the cells arrest at G1 phase with reduced cell size at non-permissive temperature reminiscent of tor2-287 mutant phenotype. Similarly, inactivation of Wat1 results in the failure of TORC1 mediated phosphorylation of Psk1 and Rps602, leading to dysregulation of amino acid permeases and delocalization of Gaf1, a DNA binding transcription factor. Overall, we have hypothesized that Wat1/Pop3 is required to execute the function of TORC1.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/genética , Transativadores/metabolismo
16.
Acta Neuropathol ; 145(1): 29-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357715

RESUMO

Epitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs. NSun2 loss of function due to autosomal-recessive mutations has been associated with neurological abnormalities in humans. Here, we show NSun2 is expressed in adult human neurons in the hippocampal formation and prefrontal cortex. Strikingly, we unravel decreased NSun2 protein expression and an increased ratio of pTau/NSun2 in the brains of patients with Alzheimer's disease (AD) as demonstrated by Western blotting and immunostaining, respectively. In a well-established Drosophila melanogaster model of tau-induced toxicity, reduction of NSun2 exacerbated tau toxicity, while overexpression of NSun2 partially abrogated the toxic effects. Conditional ablation of NSun2 in the mouse brain promoted a decrease in the miR-125b m6A levels and tau hyperphosphorylation. Utilizing human induced pluripotent stem cell (iPSC)-derived neuronal cultures, we confirmed NSun2 deficiency results in tau hyperphosphorylation. We also found that neuronal NSun2 levels decrease in response to amyloid-beta oligomers (AßO). Notably, AßO-induced tau phosphorylation and cell toxicity in human neurons could be rescued by overexpression of NSun2. Altogether, these results indicate that neuronal NSun2 deficiency promotes dysregulation of miR-125b and tau phosphorylation in AD and highlights a novel avenue for therapeutic targeting.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Camundongos , Animais , Humanos , Adulto , Metiltransferases/genética , Fosforilação/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , MicroRNAs/genética , Proteínas tau/metabolismo , Mamíferos/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(40): e2210478119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161885

RESUMO

Two-trial learning in Aplysia reveals nonlinear interactions between training trials: A single trial has no effect, but two precisely spaced trials induce long-term memory. Extracellularly regulated kinase (ERK) activity is essential for intertrial interactions, but the mechanism remains unresolved. A combination of immunochemical and optogenetic tools reveals unexpected complexity of ERK signaling during the induction of long-term synaptic facilitation by two spaced pulses of serotonin (5-hydroxytryptamine, 5HT). Specifically, dual ERK phosphorylation at its activating TxY motif is accompanied by dephosphorylation at the pT position, leading to a buildup of inactive, singly phosphorylated pY-ERK. Phosphorylation and dephosphorylation occur concurrently but scale differently with varying 5HT concentrations, predicting that mixed two-trial protocols involving both "strong" and "weak" 5HT pulses should be sensitive to the precise order and timing of trials. Indeed, long-term synaptic facilitation is induced only when weak pulses precede strong, not vice versa. This may represent a physiological mechanism to prioritize memory of escalating threats.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Memória de Longo Prazo , Priming de Repetição , Serotonina , Animais , Aplysia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Memória de Longo Prazo/fisiologia , Optogenética , Fosforilação/genética , Priming de Repetição/fisiologia , Serotonina/farmacologia , Fatores de Tempo
18.
Genes (Basel) ; 13(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36140694

RESUMO

(1) Background: RNA binding motif 20 (RBM20) regulates mRNA splicing specifically in muscle tissues. Missense mutations in the arginine/serine (RS) domain of RBM20 lead to abnormal gene splicing and have been linked to severe dilated cardiomyopathy (DCM) in human patients and animal models. Interestingly, many of the reported DCM-linked missense mutations in RBM20 are in a highly conserved RSRSP stretch within the RS domain. Recently, it was found that the two Ser residues within this stretch are constitutively phosphorylated, yet the identity of the kinase(s) responsible for phosphorylating these residues, as well as the function of RSRSP phosphorylation, remains unknown. (2) Methods: The ability of three known SR protein kinases (SRPK1, CLK1, and AKT2) to phosphorylate the RBM20 RSRSP stretch and regulate target gene splicing was evaluated by using both in vitro and in vivo approaches. (3) Results: We found that all three kinases phosphorylated S638 and S640 in the RSRSP stretch and regulated RBM20 target gene splicing. While SRPK1 and CLK1 were both capable of directly phosphorylating the RS domain in RBM20, whether AKT2-mediated control of the RS domain phosphorylation is direct or indirect could not be determined. (4) Conclusions: Our results indicate that SR protein kinases regulate the splicing of a cardiomyopathy-relevant gene by modulating phosphorylation of the RSRSP stretch in RBM20. These findings suggest that SR protein kinases may be potential targets for the treatment of RBM20 cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Proteínas Quinases , Proteínas de Ligação a RNA , Animais , Arginina/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Humanos , Fosforilação/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Serina
19.
Oxid Med Cell Longev ; 2022: 8661200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35993019

RESUMO

Background: Neuroinflammation-induced phosphorylated Tau (p-Tau) deposition in central nervous system contributes to neurodegenerative disorders. Propofol possesses neuroprotective properties. We investigated its impacts on tumor necrosis factor-α (TNF-α)-mediated p-Tau deposition in neurons. Methods: Mouse hippocampal neurons were exposed to propofol followed by TNF-α. Cell viability, p-Tau, mitophagy, reactive oxygen species (ROS), NOD-like receptor protein 3 (NLRP3), antioxidant enzymes, and p62/Keap1/Nrf2 pathway were investigated. Results: TNF-α promoted p-Tau accumulation in a concentration- and time-dependent manner. TNF-α (20 ng/mL, 4 h) inhibited mitophagy while increased ROS accumulation and NLRP3 activation. It also induced glycogen synthase kinase-3ß (GSK3ß) while inhibited protein phosphatase 2A (PP2A) phosphorylation. All these effects were attenuated by 25 µM propofol. In addition, TNF-α-induced p-Tau accumulation was attenuated by ROS scavenger, NLRP3 inhibitor, GSK3ß inhibitor, or PP2A activator. Besides, compared with control neurons, 100 µM propofol decreased p-Tau accumulation. It also decreased ROS and NLRP3 activation, modulated GSK3ß/PP2A phosphorylation, leaving mitophagy unchanged. Further, 100 µM propofol induced p62 expression, reduced Keap1 expression, triggered the nuclear translocation of Nrf2, and upregulated superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) expression, which was abolished by p62 knockdown, Keap1 overexpression, or Nrf2 inhibitor. Consistently, the inhibitory effect of 100 µM propofol on ROS and p-Tau accumulation was mitigated by p62 knockdown, Keap1 overexpression, or Nrf2 inhibitor. Conclusions: In hippocampal neurons, TNF-α inhibited mitophagy, caused oxidative stress and NLRP3 activation, leading to GSK3ß/PP2A-dependent Tau phosphorylation. Propofol may reduce p-Tau accumulation by reversing mitophagy and oxidative stress-related events. Besides, propofol may reduce p-Tau accumulation by modulating SOD and HO-1 expression through p62/Keap1/Nrf2 pathway.


Assuntos
Mitofagia , Fator 2 Relacionado a NF-E2 , Propofol , Fator de Transcrição TFIIH , Fator de Necrose Tumoral alfa , Proteínas tau , Animais , Camundongos , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mitofagia/genética , Mitofagia/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Propofol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Superóxido Dismutase/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Virus Res ; 319: 198872, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-35853521

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a major DNA sensor. The recognition of cytosolic DNA by cGAS triggers a robust innate immune response that restricts the replication of diverse viral pathogens through the type I interferon (IFN) and nuclear factor-κB (NF-κB) pathways. African swine fever virus (ASFV) is a large and complex DNA virus reported to strongly inhibit the cGAS-STING signaling pathway. Herein, 12 ASFV structural proteins were screened to determine their effects on the cGAS-STING pathway. Ectopic expression of the ASFV caspid protein M1249L significantly inhibited the IFN-ß promoter activity induced by the cGAS-STING pathway in a dose-dependent manner. And it could also downregulate the levels of IFN-ß and several interferon-stimulating genes (ISGs) induced by cGAS-STING and 2'3'-cGAMP. Moreover, ASFV M1249L also suppressed phosphorylation of TBK1 by cGAS and STING overexpression. Further study showed that M1249L co-localized and interacted with interferon regulatory factor 3 (IRF3), which led to induce IRF3 degradation by lysosomal pathway. Taken together, our study revealed a novel strategy utilized by ASFV for cGAS-STING-related immune evasion.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Vírus da Febre Suína Africana/genética , Animais , DNA/metabolismo , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...